
J Math Chem (2009) 46:502–513
DOI 10.1007/s10910-008-9474-4

ORIGINAL PAPER

Dynamical analysis of a chemostat model with delayed
response in growth and pulse input in polluted
environment

Jianjun Jiao · Lansun Chen

Received: 13 April 2008 / Accepted: 6 October 2008 / Published online: 31 October 2008
© Springer Science+Business Media, LLC 2008

Abstract In this paper, a chemostat model with delayed response in growth and
pulse input in polluted environment is considered. Using the discrete dynamical system
determined by the stroboscopic map, we obtain a microorganism-extinction periodic
solution. Further, it is globally attractive. The permanent condition of the investigated
system is also obtained by the theory on impulsive delay differential equation. Our
results reveal that the delayed response in growth plays an important role on the
outcome of the chemostat.

Keywords Chemostat model · Delayed response in growth · Pulse input in polluted
environment · Extinction · Permanence

1 Introduction

The chemostat is a basic piece of laboratory apparatus. The advantages that certain
of the biological parameters assumed to influence the outcomes can be controlled
by the experimenters. The chemostat plays an important role in bioprocessing, such
as ecology, microbiology, chemical engineering, etc. Smith and Waltman had made
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discussion about the chemostat model in [1]. The models contain discrete time delays
which account for time which laps between uptaked of nutrient and the assimilation
of nutrient into viable biomass. Smith and Waltman [2] and Kuang [3] discussed
various aspects of models with discrete time delay. Freedman et al. [4] were the first
to incorporate time delay in chemostat models. Ellermeyer [5] and Hsu et al. [6,7]
analyzed a discrete time delay model with two competitive microorganisms for a
single nutrient in a chemostat. Ellermeyer et al. [8] did a theoretical and empirical
investigation of delayed growth response in the continuous culture of bacteria. Delays
occur naturally in biological system by two obvious sources of delays: delays due to
the cell cycle; and delays due to the possibility the organism stores the nutrient. Delays
appear in a chemostat model in Bush and Cook [9]. They have investigated a model
of growth of one organism in the chemostat with a delay in the intrinsic growth rate
of the microorganism but with no delay in the substrate equation.

While the most threatening problem to the society is the change in both terrestrial
and aquatic environment caused by the different kinds of stresses (temperature, toxi-
cants/poflutants, etc.) affecting the long term survival of species, human life style and
biodiversity of the habitat [10–12]. Presence of toxicant in the environments decreases
the growth rate of species and its carrying capacity. In recent years, some investigations
have been carried out to study the effect of toxicant on a single species population
[13–16], and a lot of scholars have adopted mathematical modeling approach to study
the influence of environmental pollution on the surviving of biological population
[17,18]. Most of the previous work assumed that input of toxicant was continuous.
The toxicants, however, are often emitted to the environment with regular pulse [19].
A lot of data have indicated that the use of agriculture chemicals may cause potential
harm to the health of both human beings and living beings. If the spraying of agri-
culture chemicals can be regarded as time pulse discharge, the continuous input of
toxin can be regarded discharged and replaced by an impulsive perturbations. In this
case, though the discharge of toxin is transient, the influence of the toxin will last
long. Therefore, it is very important that how controls the pulse input cycle of toxin to
protect the population persistent existence. The system approximates conditions for
plankton growth in lakes are in a chemostat form, where the limiting nutrients such as
silica and phosphate are supplied from streams draining the watershed.

In recent years, the microbial continuous culture has been investigated in [7,8,20–
24] and some interesting results were obtained. Many researchers indicated that it was
important to consider models with periodic perturbations, since these models may be
quite naturally exposed in many real world phenomena, for instance, food supply, mat-
ing habits. In fact, the perturbations such as floods and the drainage of sewage which
are not suitable to be considered with continuity. These perturbations bring sudden
changes to the system. Systems with sudden perturbations are involving an impul-
sive differential equations which have been studied intensively and systematically in
[25,26]. While there are few papers [27,28] research the chemostat model with im-
pulsive perturbations.

The organizations of the paper are as following. In Sect. 2, we introduce a chemostat
model with delayed response in growth and pulse input in polluted environment. In
Sect. 3, we present some preliminary results about the investigated model. Our main
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results are stated and proven in Sect. 4. Finally, we conclude with a brief discussion
in Sect. 5.

2 The model

We investigate the following chemostat model with delayed response in growth and
pulse input in polluted environment.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ds(t)

dt
= D(s0 − s(t)) − P(s(t))x(t),

dx(t)

dt
= −Dx(t) + e−Dτ1 P(s(t − τ1))x(t − τ1) − βc0(t)x(t),

dc0(t)

dt
= f ce(t) − (g + m)c0(t),

dce(t)

dt
= −hce(t),

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

t �= nτ,

�s(t) = p1,

�x(t) = 0,

�c0(t) = 0,

�ce(t) = p2,

⎫
⎪⎪⎬

⎪⎪⎭

t = nτ, n = 1, 2 . . . ,

(ϕ1(ζ ), ϕ2(ζ ), ϕ3(ζ ), ϕ4(ζ )) ∈ C+ = C([−τ1, 0], R4+), ϕi (0) > 0, i = 1, 2, 3, 4,

(2.1)

where s(t)denotes the concentration of the substrate at time t . s0 denotes the concentra-
tion of substrate in the feed bottle. x(t) denotes the concentration of the microorganism
at time t . c0(t) represents the concentration of toxicant in the microorganism at time t ,
ce(t) represents the concentration of toxicant in the environment at time t . τ1 stands for
the time delay in conversion of nutrient to biomass for the microorganism. As discussed
in [5,24], e−Dτ1 x(t−τ1) represents the biomass of those microorganisms that consume
nutrient τ1 units of time prior to time t and that survive in the chemostat the τ1 units of
time necessary to complete the nutrient conversion process. D denotes the input rate
from the feed bottle containing the substrate and the wash-out rate of substrate and
microorganisms by products from the growth chamber. P(s(t)) indicates the consump-
tion rate of nutrient by the microorganism. It is assumed that P(0) = 0, P ′(0) > 0
and P ′′(0) ≤ 0. β is the depletion rate coefficient of the microorganism population
due to organismal pollutant concentration. f ce(t) is the organism’s net uptake of toxi-
cant from the environment at time t . −gc0(t) and −mc0(t) represents the elimination
and depuration rates of toxicant in the organism at time t ,respectively. −hce(t) repre-
sents the totality of losses from the system environment including processes such as
biological transformation, chemical hydrolysis, volatilization, microbial degradation
and photosynthetic degradation at time t . τ is the period of the throwing in substrate
concentration. �s(t) = s(t+) − s(t) and �ce(t) = ce(t+) − ce(t), p1 ≥ 0 is the
amount of the substrate concentration pulse at t = nτ, n ∈ Z+ and Z+ = {1, 2, . . .},
and p2 ≥ 0 is the amount of pulse input of toxicant concentration at t = nτ, n ∈ Z+
and Z+ = {1, 2, . . .}. The purpose of this paper is to prove that the system (2.1)
has a microorganism-extinction periodic solution, further, it is globally attractive, and
system (2.1) is permanence.
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3 The lemmas

The solution of (2.1), denoted by X (t) = (s(t), x(t), c0(t), ce(t))T , is a piecewise
continuous function X : R+ → R4+, X (t) is continuous on (nτ, (n +1)τ ], n ∈ Z+ and
X (nτ+) = limt→nτ+ X (t) exists. Obviously the global existence and uniqueness of
solutions of (2.1) is guaranteed by the smoothness properties of f , which denotes the
mapping defined by right-side of system (2.1) [25,26].

Before we have the main results. we need to give some lemmas which will be used
in the next.

Lemma 3.1 [19] Consider the following subsystem of (2.1)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dc0(t)

dt
= f ce(t) − (g + m)c0(t),

dce(t)

dt
= −hce(t),

⎫
⎪⎬

⎪⎭
t �= nτ, n ∈ Z+,

�c0(t) = 0,

�ce(t) = p2,

}

t = nτ, n = 1, 2 . . . , n ∈ Z+,

(3.1)

then, system (3.1) has a unique positive τ -periodic solution (˜c0(t), ˜ce(t)), which is
globally asymptotically stable, where

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˜c0(t) = ˜c0(0)e−(g+m)(t−nτ) + p2 f (e−(g+m)(t−nτ) − e−h(t−nτ))

(h − g − m)(1 − e−hτ )
,

˜ce(t) = p2e−h(t−nτ)

1 − e−hτ
,

˜c0(0) = p2 f (e−(g+m)τ − e−hτ )

(h − g − m)(1 − e−(g+m)τ )(1 − e−hτ )
,

˜ce(0) = p2

1 − e−hτ
,

(3.2)

Remark 3.1 From Lemma 3.1, we can obtain that m0 ≤ c0(t) ≤ M0 and me ≤
ce(t) ≤ Me for t large enough, where m0 = p2 f (e−(g+m)τ −e−hτ )

(h−g−m)(e(g+m)τ −1)(1−e−hτ )
− ε > 0,

M0 = p2 f (e−(g+m)τ −e−hτ )

(h−g−m)(1−e−(g+m)τ )(1−e−hτ )
+ p2 f

|h−g−m|(1−e−hτ )
+ ε, me = p2e−hτ

1−e−hτ − ε > 0 and

Me = p2
1−e−hτ + ε for sufficiently small ε > 0.

Lemma 3.2 Let (ϕ1(t), ϕ2(t), ϕ3(ζ ), ϕ4(ζ )) > 0 for −τ1 < t < 0, then any solution
of system (2.1) is strictly positive.

Proof By uniqueness of solutions of system (2.1) and s′(t) > 0 whenever s(t) =
0,t �= nτ , and s(nτ+) = s(nτ) + p1, for p1 ≥ 0. It is easy to see that s(t) > 0 for all
t > 0.

Secondly, we show that x(t) > 0 for all t > 0. Notice x(t) > 0, hence if there
exists t0 such that x(t0) = 0, then t0 > 0. Assume that t0 is the first such time that
x(t) = 0, that is t0 = in f {t > 0 : x(t) = 0}, then x ′(t0) = e−Dτ1 P(s(t0 − τ1))x(t0 −
τ1)> 0. Hence for sufficiently small ε > 0, x ′(t − ε) > 0. But by the definition of t0,
x ′(t0 − ε)≤ 0. This contradiction shows that x(t) > 0 for all t > 0.
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Finally, from Remark 3.1, it is easy to prove that c0(t) and ce(t) are positive. �	

Lemma 3.3 There exists a positive constant s0 + p1 exp(Dτ)
exp(Dτ)−1 such that s(t) ≤ s0 +

p1 exp(Dτ)
exp(Dτ)−1 , x(t)≤ s0 + exp(Dτ)

exp(Dτ)−1 for each solution (s(t), x(t), c0(t), ce(t)) of (2.1)
with all t large enough.

Proof Define V (t) = e−Dτ1 s(t) + x(t + τ1), then t �= nτ , we have

D+V (t) + DV (t) = Ds0

when t = nτ, V (nτ+) = V (nτ) + p1e−Dτ1 ≤ V (nτ) + p1. By Lemma 2.2. (which
can be seen in [11], Page 23), for t ∈ (nτ, (n + 1)τ ] we have

V (t) ≤ V (0) exp(−Dt)+ s0(1 − exp(−Dt))+ p1 exp(−D(t − τ))

1 − exp(Dτ)
+ p1 exp(Dτ)

exp(Dτ) − 1

→ s0 + p1 exp(Dτ)

exp(Dτ) − 1
, t → ∞.

So V (t) is uniformly ultimately bounded. Hence, by the definition of V (t), there
exists a constant s0 + p exp(Dτ)

exp(Dτ)−1 > 0 such that s(t) ≤ [
s0 + p exp(Dτ)

exp(Dτ)−1

]
eDτ1 , x(t) ≤

s0 + p exp(Dτ)
exp(Dτ)−1 for t large enough. �	

Lemma 3.4 [3] Considering the following delay equation

y′(t) = a1 y(t − τ) − a2 y(t), (3.3)

where a1, a2, τ > 0; y(t) > 0 for −τ ≤ t ≤ 0. If a1 < a2, limt→∞ y(t) = 0.

Lemma 3.5 [29] Considering the following impulsive system

{
v′(t) = D(s0 − v(t)), t �= nτ,

v(nτ+) = v(nτ) + p1, t = nτ, n = 1, 2 . . . .
(3.4)

where a > 0, b > 0. Then system (2.4) has a unique positive periodic solution
˜v(t) = s0 + p1e−D(t−nτ )

1−e−Dτ , t ∈ (nτ, (n + 1)τ ], n ∈ Z+, which is globally asymptotically
stable.

4 Dynamical behaviors of system (2.1)

According to Lemma 3.1 and Lemma 3.5, we know that (2.1) has a microorganism-
extinction periodic solution (˜s(t), 0, ˜c0(t), ˜ce(t)). In this section, we will obtain the
sufficient condition of the global attractivity of microorganism-extinction periodic
solution (˜s(t), 0, ˜c0(t), ˜ce(t)) of system (2.1).
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Theorem 4.1 If

p1 ≤ (e−Dτ−1)

{

P−1

[

e−Dτ1

(

D+ βp2 f (e−(g+m)τ−e−hτ )

(h−g−m)(e(g+m)τ−1)(1−e−hτ )

)]

−s0

}

,

holds, the microorganism-extinction periodic solution (˜s(t), 0, ˜c0(t), ˜ce(t)) of (2.1)
is globally attractive.

Proof Since p1 ≤ (e−Dτ−1)
{

P−1
[
e−Dτ1

(
D+ βp2 f (e−(g+m)τ −e−hτ )

(h−g−m)(e(g+m)τ −1)(1−e−hτ )

)]
−s0

}
,

we can choose ε0 sufficiently small such that

e−Dτ1 P

(

s0 + p1

eDτ − 1
+ ε0

)

< D + β
(
˜c0(t) − ε0

)
.

It follows from that the first equation of system (2.1) that ds(t)
dt ≤ D(s0 − s(t)). So we

consider the following comparison impulsive differential system

⎧
⎪⎨

⎪⎩

dx1(t)

dt
= D(s0 − x1(t)), t �= nτ,

�x1(t) = p1, t = nτ,

x1(0
+) = s(0+),

(4.1)

In view of Lemma 3.5, we obtain that the periodic solution of system (4.1)

˜x1(t) = s0 + p1e−D(t−nτ)

1 − e−Dτ
, t ∈ (nτ, (n + 1)τ ], n ∈ Z+, (4.2)

which is globally asymptotically stable.
From Lemma 2.4. and comparison theorem of impulsive equation [16], we have

s(t) ≤ x1(t) and x1(t) → ˜x1(t) as t → ∞. Then there exists an integer k′
2 > k1, t > k′

2
such that

s(t) ≤ x1(t) ≤ ˜x1(t) + ε0, nτ < t ≤ (n + 1)τ, n > k′
2,

that is

s(t) < ˜x1(t) + ε0 ≤ s0 + p1

eDτ − 1
+ ε0

�= �, nτ < t ≤ (n + 1)τ, n > k′
2.

Because s(t) and x(t) cannot affect the subsystem (3.1) of system (2.1), and from
Lemma 3.1, we obtain that c0(t) ≥ ˜c0(t) − ε′

0 for nτ < t ≤ (n + 1)τ, n > k′′
2 , that

is, c0(t) ≥ m0 for nτ < t ≤ (n + 1)τ, n > k′′
2 . For convenience, assuming ε′

0 = ε0,
k2 = max{k′

2, k′′
2 }, we have s(t) < �, c0(t) ≥ m0, nτ < t ≤ (n +1)τ, n > k2, k2 > k1.

From the second equation of system (2.1), we get

dx(t)

dt
≤ e−Dτ1 P(�)x(t − τ1) − (D + βm0)x(t), t > nτ + τ1, n > k2, (4.3)
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Considering the following comparison differential system

dy(t)

dt
= e−Dτ1 P(�)y(t − τ1) − (D + βm0)y(t), t > nτ + τ1, n > k2, (4.4)

we have e−Dτ1 P(�) < D+βm0. According to Lemma 3.4, we have limt→∞ y(t) = 0.
Let (s(t), x(t), c0(t), ce(t)) be the solution of system (2.1) with initial conditions

and x(ζ ) = ϕ2(ζ )(ζ ∈ [−τ1, 0]), y(t) is the solution of system (4.4) with initial
conditions y(ζ ) = ϕ3(ζ )(ζ ∈ [−τ1, 0]). By the comparison theorem, we have

lim
t→∞ x(t) < lim

t→∞ y(t) = 0,

Incorporating into the positivity of x(t), we know that limt→∞ x(t) = 0, Therefore,
for any ε1 > 0 (sufficiently small), there exists an integer k3(k3τ > k2τ + τ1) such
that x(t) < ε1 for all t > k3τ .

For system (2.1), we have

D[s0 − (1 + ε1 P ′(0))s(t)] ≤ ds(t)

dt
≤ D(s0 − s(t)), (4.5)

Then we have z1(t) ≤ s(t) ≤ z2(t) and z1(t) → ˜x1(t), z2(t) → ˜x1(t) as t → ∞.
while z1(t) and z2(t) are the solutions of

⎧
⎪⎨

⎪⎩

dz1(t)

dt
= D[s0 − (1 + ε1 P ′(0))z1(t)], t �= nτ,

z1(t
+) = z1(t) + p1, t = nτ,

z1(0
+) = s(0+),

(4.6)

and

⎧
⎪⎨

⎪⎩

dz2(t)

dt
= D(s0 − z2(t)), t �= nτ,

z2(t
+) = z2(t) + p1, t = nτ,

z2(0
+) = s(0+),

(4.7)

respectively. For nτ < t ≤ (n + 1)τ , ˜z1(t) = 1
1+ε1 P ′(0)

[

s0 + p1e−D(1+εP ′(0))(t−τ )

1−e−D(1+ε1 P ′(0))τ

]

.

Therefore, for any ε2 > 0. there exists a integer k4, n > k4 such that ˜z1(t) + ε2 <

s(t) < ˜s(t) − ε2, Let ε1 → 0, so we have˜s(t) − ε2 < s(t) < ˜s(t) + ε2, for t large
enough, which implies s(t) →˜s(t) as t → ∞.

Because s(t) and x(t) cannot affect the subsystem (3.1) of system (2.1), and from
Lemma 3.1, we obtain that c0(t) → ˜c0(t) and ce(t) → ˜ce(t) as t → ∞. �	
Definition 4.2 system (2.1) is said to be permanent, if there are constants
m, M, m0, M0, me, Me > 0 (independent of initial value) and a finite time T0 such that
for all solutions (s(t), x(t), c0(t), ce(t)) with all initial values s(t) > 0, x(0+) > 0,
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m ≤ s(t) < M, m ≤ x(t) ≤ M, m0 ≤ x(t) ≤ M0, me ≤ x(t) ≤ Me holds for all
t ≥ T0. Here T0 may depend on the initial values (s(0+), x(0+), c0(0+), ce(0+)).

Theorem 4.3 If

p1 ≥ (eD(1+x∗ P ′(0))τ − 1)

×
[

P−1

[(

D+ βp2 f (e−(g+m)τ−e−hτ )

(h−g−m)(1−e−(g+m)τ )(1−e−hτ )
+ p2 f

|h−g−m|(1−e−hτ )

)

eDτ1

]

×(1 + x∗ P∗(0)) − s0
]
,

holds, there is a positive constant q such that each positive solution (s(t), x(t), c0(t),
ce(t)) of (2.1) satisfies x(t) ≥ q, for t large enough. Where x∗ is determined by the
equation

s0(eD(1+x∗ P ′(0))τ − 1) + p1 = [eD(1+x∗ P ′(0))τ − 1] × P−1

×
[(

D+ βp2 f (e−(g+m)τ−e−hτ )

(h−g−m)(1−e−(g+m)τ )(1−e−hτ )
+ p2 f

|h−g−m|(1−e−hτ )

)

eDτ1

]

×[1 + x∗ P ′(0)].

Proof The second equation of system (2.1) can be rewritten as

dx(t)

dt
= [e−Dτ P(s(t)) − (D + βc0(t))]x(t) − e−Dτ1

d

dt

∫ t

t−τ1

P(s(u))x(u)du,

(4.8)

Let us consider any positive solution (s(t), x(t), c0(t), ce(t)) of system (2.1).
According to (4.8), V (t) is defined as

V (t) = x(t) + e−Dτ1

∫ t

t−τ1

P(s(u))x(u)du,

We calculate the derivative of V (t) along the solution of (2.1)

dV (t)

dt
= [e−Dτ P(s(t)) − (D + βc0(t))]x(t), (4.9)

Since p ≥ (eD(1+x∗ P ′(0))τ − 1)[P ′(DeDτ1)(1 + x∗ P∗(0)) − s0], we can easily know
that there exists sufficiently small ε > 0 such that

e−Dτ P

(
1

1 + x∗ P ′(0)

[

s0 + p1

eD(1+x∗ P ′(0))τ − 1

]

+ ε

)

> D+β

(
p2 f (e−(g+m)τ − e−hτ )

(h − g − m)(1 − e−(g+m)τ )(1 − e−hτ )
+ p2 f

|h − g − m|(1 − e−hτ )
+ ε

)

.
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We claim that for any t0 > 0, it is impossible that x(t) < x∗ for all t > t0. Suppose
that the claim is not valid. Then there is a t0 > 0 such that x(t) < x∗ for all t > t0. It
follows from the first equation of (2.1) that for all t > t0

ds(t)

dt
> D[s0 − (1 + P ′(0)x∗)s(t)], (4.10)

Consider the following comparison impulsive system for all t > t0

{ dv(t)

dt
= D[s0 − (1 + P ′(0)x∗)v(t)], t �= nτ,

�v(t) = p1, t = nτ,
(4.11)

By Lemma 3.5, we obtain ˜v(t) = 1
1+x∗ P ′(0)

[

s0 + p1e−D(1+x∗ P ′(0))(t−nτ )

1−e−D(1+x∗ P ′(0))τ

]

, nτ < t ≤
(n + 1)τ is the unique positive periodic solution of (4.11) which is globally asymp-
totically stable. By the comparison theorem for impulsive differential equation [11],
we know that there exists t1(> t0 + τ1) such that the inequality s(t) ≥ ˜v(t) + ε

holds for t ≥ t1, thus s(t) ≥ 1
1+x∗ P ′(0)

[
s0 + p1

eD(1+x∗ P ′(0))τ −1

]
+ ε for all t ≥ t1. For

convenience, we make notation as σ
�= 1

1+x∗ P ′(0)

[
s0 + p

eD(1+x∗ P ′(0))τ −1

]
+ ε. So we

have
e−Dτ1 P(σ ) > D + βM0,

then we have
V ′(t) > x(t)[e−Dτ1 P(σ ) − (D + βM0)],

for all t > t1. Set xm = mint∈[t1,t1+τ1] x(t), we will show that x(t) ≥ xm for all
t ≥ t1. Suppose the contrary, then there is a T0 > 0 such that x(t) ≥ xm for t1 ≤ t ≤
t1 + τ1 + T0, x(t1 + τ1 + T0) = xm and x ′(t1 + τ1 + T0) < 0. Hence, the first equation
of system (1.1) imply that

x ′(t1 + τ1 + T0) = e−Dτ1 P(s(t1 + τ1 + T0)x(t1 + τ1 + T0)

−[D + βc0(t1 + τ1 + T0)]x(t1 + τ1 + T0),

≥ [e−Dτ1 P(σ ) − (D + βM0)]xm > 0.

This is a contradiction. Thus, x(t) ≥ xm for all t > t1. As a consequence, Then
V ′(t) > xm[e−Dτ1 P(σ )−(D+βM0)] > 0 for all t > t1. This implies that as t → ∞,

V (t) → ∞. It is a contradiction to V (t) ≤ M
(

1 + τ1e−Dτ1 P
(

s0 + p exp(Dτ)
exp(Dτ)−1

))
.

Hence, the claim is complete.
By the claim, we are left to consider two case. First, x(t) ≥ x∗ for all t large enough.

Second, x(t) oscillates about x∗ for t large enough.
Define

q = min

{
x∗

2
, q1

}

, (4.12)
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where q1 = x∗e−(D+βM0)τ1 . We hope to show that x(t) ≥ q for all t large enough.
The conclusion is evident in first case. For the second case, let t∗ > 0 and ξ > 0
satisfy x(t∗) = x(t∗ + ξ) = x∗ and x(t) < x∗ for all t∗ < t < t∗ + ξ where
t∗ is sufficiently large such that x(t) > σ for t∗ < t < t∗ + ξ , x(t) is uniformly
continuous. The positive solutions of (1.1) are ultimately bounded and x(t) is not
affected by impulses. Hence, there is a T (0 < t < τ1 and T is dependent of the choice
of t∗) such that x(t∗) > x∗

2 for t∗ < t < t∗ + T . If ξ < T , there is nothing to prove.
Let us consider the case T < ξ < τ1. Since x ′(t) > −(D+βM0)x(t) and x(t∗) = x∗,
it is clear that x(t) ≥ q1 for t ∈ [t∗, t∗ + τ1]. Then, proceeding exactly as the proof
for the above claim. We see that x(t) ≥ q1 for t ∈ [t∗ + τ1, t∗ + ξ ]. Because the
kind of interval t ∈ [t∗, t∗ + ξ ] is chosen in an arbitrary way (we only need t∗ to be
large). We concluded x(t) ≥ q for all large t . In the second case. In view of our above
discussion, the choice of q is independent of the positive solution, and we proved that
any positive solution of (2.1) satisfies x(t) ≥ q for all sufficiently large t . �	
Theorem 4.4 If

p1 ≥ (eD(1+x∗ P ′(0))τ − 1)

×
[

P−1

[(

D+ βp2 f (e−(g+m)τ−e−hτ )

(h−g−m)(1−e−(g+m)τ )(1−e−hτ )
+ p2 f

|h−g−m|(1−e−hτ )

)

eDτ1

]

×(1 + x∗ P∗(0)) − s0
]
, (4.13)

holds, system (2.1) is permanent.

Proof Denote (s(t), x(t), c0(t), ce(t)) be any solution of system (2.1). From the first
equation of system (2.1) and theorem 4.3, we have

⎧
⎨

⎩

ds(t)

dt
≥ D

{

s0 −
[

1 +
(

s0 + p1 exp(Dτ)

exp(Dτ) − 1

)

P ′(0)

]

s(t)

}

, t �= nτ,

�s(t) = p1, n = τ,

(4.14)

By the same argument as those in the proof of theorem 4.1, we have that limt→∞ x1(t)≥
w, where w = 1

1+(s0+ p1 exp(Dτ )

exp(Dτ )−1 )P ′(0)

[

s0 + p1e
−D[1+(s0+ p1 exp(Dτ )

exp(Dτ )−1 )P ′(0)](t−τ )

1−e
−D(1+(s0+ p1 exp(Dτ )

exp(Dτ )−1 )P ′(0))τ

]

− ε.

By Remark 3.1 and the above discussion, system (2.1) is permanent. �	

5 Discussion

A chemostat system with delayed response in growth and pulse input in polluted
environment is investigated in this paper. We obtain that the microorganism-extinction
periodic solution of system (2.1) is globally attractive. The permanent condition of
the system (2.1) is also obtained. From Theorem 4.1 and Theorem 4.4, we can also
guess that there must exist a threshold p∗

1 . If p1 < p∗
1 , the microorganism-extinction

periodic solution (˜s(t), 0, ˜c0(t), ˜ce(t)) of (2.1) is globally attractive. If p1 > p∗
1 ,
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system (2.1) is permanent, or from Theorem 4.1 and Theorem 4.4, we can easily guess
that there must exist a threshold τ ∗

1 . If τ1 < τ ∗
1 , the microorganism-extinction periodic

solution (˜s(t), 0, ˜c0(t), ˜ce(t)) of (2.1) is globally attractive. If τ1 > τ ∗
1 , system (2.1)

is permanent. The results show the delayed response in growth (which is depicted by
τ1) plays an important role for the permanence of system (2.1), and the pulse input on
substrate affects the dynamical behaviors of system (2.1).

References

1. H. Smith, P. Waltman, Theory of Chemostat (Combridge University, Combridge 1995)
2. H. Smith, P. Waltman, Perturbation of a globally stable steady state. Proc. A.M.S., 127(2), 447–453

(1999)
3. K. Yang, Delay Differential Equation with Application in Population Dynamics (Academic Press,

Boston 1993)
4. H.I. Freedman, J.W.H. So, P. Waltman, in Chemostat Competetition with Delays, ed. by J. Eisenfeld,

D.S. Levine. Biomedicial Modelling and Simulation (Scientific Publishing Co., 1989), pp. 171–173
5. S.F. Ellermeyer, Competition in the chemostat: global asymptotic behavior of a model with delayed

response in growth. SIAM J. Appl. Math. 154, 456–465 (1994)
6. L.E. Caltagirone, R.L. Doutt, Global behavior of an SEIRS epidemic model with delays, the history

of the vedalia beetle importation to California and its impact on the development of biological control.
Ann. Rev. Entomol. 34, 1–16 (1989)

7. S.B. Hsu, P. Waltman, S.F. Ellermeyer, A remark on the global asymptotic stability of a dynamical
system modeling two species competition. Hiroshima Math. J. 24, 435–445 (1994)

8. S. Ellermeyer, J. Hendrix, N. Ghoochan, A theoretical and empirical investigation of delayed growth
response in the continuous culture of bacteria. J. Theor. Biol. 222, 485–494 (2003)

9. A.W. Bush, A.E. Cook, The effect of time delay and growth rate inhibition in the bacterial treatment
of wastewater. J. Theor. Biol. 63, 385–395 (1975)

10. C.N. Hass, Application of predator-prey models to disinfection. J. Water Pollut. Contr. Fed. 53, 378–386
(1981)

11. S.B. Hsu, P. Waltman, Competition in the chemostat when one competitor produces a toxin. Jpn.
J. Ind. Appl. Math. 15, 471–490 (1998)

12. A.L. Jenson, J.S. Marshall, Application of surplus production model to access environmental impacts
in exploited populations of Daphnia pluex in the laboratory. Environ. Pollut. (Ser. A) 28, 273–280
(1982)

13. J.T. De Luna, T.G. Hallam, Effects of toxicants on population: a qualitiative approach. IV. Resource-
consumer-toxicants model, Ecol. Model. 35, 249–273 (1987)

14. B. Dubey, Modelling the effect of toxicant on forestry resources. Indian J. Pure Appl. Math. 28, 1–12
(1997)

15. H.I. Freedman, J.B. Shukla, Models for the effect of toxicant in a single-species and predator-prey
systems. J. Math. Biol. 30, 15–30 (1991)

16. T.G. Hallam, C.E. Clark, G.S. Jordan, Effects of toxicant on population: a qualitative approach. II.
First order kinetics. J. Math. Biol. 18, 25–37 (1983)

17. B. Zhang, Population’s Ecological Mathematics Modeling (Publishing of Qingdao Marine University,
Qingdao, 1990)

18. T.G. Hallam, C.E. Clark, R.R. Lassider, Effects of toxicant on population: a qualitative approach. I.
Equilibrium environmental exposure. Ecol. Model. 18, 291–340 (1983)

19. B. Liu, L.S. Chen, Y.J. Zhang, The effects of impulsive toxicant input on a population in a polluted
environment. J. Biol. Syst. 11, 265–287 (2003)

20. G.L. Bulert, S.B. Hsu, P. Waltman, A mathematical model of the chemostat with periodic washout rate.
SIAM J. Appl. Math. 45, 435–449 (1985)

21. J.K. Hale, A.M. Somolinas, Competition for fluctuating nutrent. J. Math. Biol. 18, 255–280 (1983)
22. S.B. Hsu, S.P. Hubbell, P. Waltman, A mathematical theory for single nutrent competition in continuous

cultures of microorganisms. SIAM J. Appl. Math. 32, 366–383 (1977)

123



J Math Chem (2009) 46:502–513 513

23. G.S.K. Wolkowicz, X.Q. Zhao, N-species competition in a periodic chemostat. Diff. Integr. Eq. 11,
465–491 (1998)

24. L. Wang, G.S.K. Wolkowicz, A delayed chemostat model with general nonmonotone response functions
and differential removal rates. J. Math. Anal. Appl. 321, 452–468 (2006)

25. D. Bainov, P. Simeonov, Impulsive Differential Equations: Periodic Solutions and Applications, vol.
66 (Longman, NY, 1993)

26. J. Jiao, L. Chen, Global attractivity of a stage-structure variable coefficients predator-prey system with
time delay and impulsive perturbations on predators. Int. J. Biomath. 1, 197–208 (2008)

27. E. Funasaki, M. Kot, Invasion and chaos in a Lotka-Volterra system. Theor. Popul. Biol. 44, 203–224
(1993)

28. R.J. Smith, G.S.K. Wolkowicz, Analysis of a model of the nutrent driven self-cycling fermentation
process. Dyn. Contin. Disctete Impul. Syst. Ser. B 11, 239–265 (2004)

29. J. Jiao, L. Chen, S. Cai, An SEIRS epidemic model with two delays and pulse vaccination. J. Syst. Sci.
Complex. 28(4), 385–394 (2008)

123


	Dynamical analysis of a chemostat model with delayed response in growth and pulse input in polluted environment
	Abstract
	1 Introduction
	2 The model
	3 The lemmas
	4 Dynamical behaviors of system (2.1)
	5 Discussion
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


